合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 氣溶膠固定劑PAM-b-PVTES合成路線及GPC、DSC、表面張力等性能測試(三)
> 通過3個小實驗來理解水的表面張力
> 基于表面張力測試優化畫筆顏料配方
> 什么是?LB膜分析儀?LB膜分析儀的工作原理及作用
> 溴化鋰及離子液體水溶液密度、黏度和表面張力測定與計算
> 強紫外線輻射對減縮劑抑制水泥石干縮變形效果研究(一)
> 壓力、溫度、碳原子數及分子結構對CO2-正構烷烴界面張力的影響——實驗結果與討論
> 軟物質褶皺形成機制新發現:液體浸潤、表面張力與接觸線釘扎效應
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關系(二)
> 一種磺酸鹽類的高分子活性劑合成、分子結構及對油田污水回注效率影響
推薦新聞Info
-
> 新型POSS基雜化泡沫穩定劑表面張力測定及對泡沫壓縮性能的影響(三)
> 新型POSS基雜化泡沫穩定劑表面張力測定及對泡沫壓縮性能的影響(二)
> 新型POSS基雜化泡沫穩定劑表面張力測定及對泡沫壓縮性能的影響(一)
> 多功能膜材研發:界面張力已成為整套工藝鏈協同下動態演化的核心控制點
> 不同類型的聚醚類非離子破乳劑對PPG-稀釋原油界面膜性質的影響(下)
> 不同類型的聚醚類非離子破乳劑對PPG-稀釋原油界面膜性質的影響(上)
> 表面張力、XPS試驗研究DDA或TPA在鋰云母表面的吸附機理——試驗結果分析與討論、結論
> 表面張力、XPS試驗研究DDA或TPA在鋰云母表面的吸附機理——試驗原料及研究方法
> 超微量天平應用于珊瑚鍶-鈣溫度計的研究
> ?90%實驗室不知道:表面張力儀讀數誤差的隱秘來源與終極解決方案
離子組成、pH值對納米SiO2/SDS體系降低油水界面張力的影響(二)
來源:油田化學 瀏覽 72 次 發布時間:2025-08-28
2結果與討論
2.1納米SiO2/SDS分散體系的穩定性
2.1.1 SiO2的含量、離子組成對SiO2/SDS體系穩定性的影響
利用沉降法和濁度法分析分別用NaCl鹽水、模擬地層水配制的不同納米SiO2含量的納米SiO2/SDS體系的穩定性,濁度法測試結果如圖1所示。用NaCl鹽水配制的SiO2/SDS體系在靜置15 d時,僅納米SiO2質量分數為1.5%的體系出現了輕微的渾濁,而其它體系均保持澄清透明;當納米SiO2質量分數為1.5%時,SiO2/SDS體系的濁度隨靜置時間的延長稍有增大,其它體系的濁度幾乎不隨靜置時間的延長而變化,且均小于15 NTU。由此可見,用NaCl鹽水配制的納米SiO2/SDS體系的穩定性良好。
圖1納米SiO2/SDS體系的濁度隨時間的變化(SDS質量分數為0.3%)
用模擬地層水配制的納米SiO2/SDS體系經歷了澄清透明-渾濁-沉降的3個階段,靜置初始,納米SiO2質量分數為0.5%的體系的濁度不隨時間的延長而變化,表明此時體系穩定;靜置1 h后,濁度明顯增加;靜置6 h后,體系的濁度又恢復到了初始值,由于實驗測試的是樣品上半部分的濁度,說明此時體系已經完全沉降。
分別利用沉降法和濁度法得到了用模擬地層水配制的納米SiO2/SDS體系出現渾濁和沉淀的時間,結果見表1。兩種實驗方法得到的結果基本一致,因此接下來直接用沉降法來分析pH值對納米SiO2/SDS體系穩定性的影響。從表1可以看出,納米SiO2的質量分數越大,體系的穩定性越差。同時,對比NaCl鹽水和模擬地層水中納米SiO2/SDS體系的穩定性發現,當SiO2含量相同時,模擬地層水體系的穩定性遠低于NaCl鹽水體系的。
表1模擬地層水中納米SiO2/SDS體系出現渾濁、沉淀的時間(SDS質量分數為0.3%)
DLVO理論認為影響膠體穩定性的主要因素是膠體顆粒之間的范德華吸引力和靜電排斥力,而Zeta電位是對顆粒之間相互排斥或吸引力的強度的度量。當Zeta電位的絕對值(|ζ|)大于30 mV時,膠體分散體系有較好的穩定性,而當Zeta電位在-30和+30 mV之間時,體系是不穩定的。
圖2給出了分別用模擬地層水和NaCl鹽水配制的不同納米SiO2含量的納米SiO2/SDS體系的Zeta電位。當納米SiO2的質量分數分別為0.2%、0.5%和1.0%時,用NaCl鹽水配制的納米SiO2/SDS體系的|ζ|均大于30 mV,因而表現出較好的穩定性;而當納米SiO2質量分數為1.5%時,體系的|ζ|略低于30 mV,因此納米SiO2/SDS體系在靜置15 d后才出現輕微的混濁。用模擬地層水配制的納米SiO2/SDS體系的|ζ|均明顯小于30 mV,說明體系的穩定性差,靜置幾小時即出現了渾濁和沉淀。納米SiO2帶負電,金屬陽離子Ca2+,Mg2+和Na+等的存在會壓縮納米SiO2的雙電層,由于Ca2+,Mg2+離子的價數高,壓縮雙電層的能力強,導致體系的|ζ|降低,穩定性變差,由此可見,要使納米SiO2/SDS分散體系具有良好的穩定性,應減少體系中二價Ca2+、Mg2+的含量。
從圖2還可以看出,隨著納米SiO2含量的增加,用兩種鹽水配制體系的|ζ|均不斷降低,且納米SiO2的含量越大,顆粒之間的距離越小,由于布朗運動相互碰撞聚結在一起的機率就越大,因此體系的穩定性越差。
圖2納米SiO2/SDS體系的Zeta電位
2.1.2 pH值對納米SiO2/SDS分散體系穩定性的影響
為了解決模擬地層水中納米SiO2/SDS體系的穩定性問題,研究了pH值對體系穩定性的影響。未調節pH值前,模擬地層水體系的pH值均在8.5左右,此時體系穩定性較差,所以考慮通過添加少量鹽酸降低pH值來提高體系的穩定性。本文分別研究了納米SiO2質量分數分別為0.2%、0.5%、1.0%和1.5%時,在不同pH值下的SiO2/SDS體系的穩定性。當納米SiO2/SDS體系的pH值3.5時,體系靜置15 d仍呈現出澄清或輕微渾濁的狀態,具有較好的穩定性;且總體上來說,pH值越低,體系的穩定性越強。
以納米SiO2質量分數為0.5%時的體系為研究對象,分析了不同pH值時體系的Zeta電位,結果見圖3。隨著pH值的降低,納米SiO2/SDS體系的|ζ|減小且明顯小于30 mV,但是穩定性卻得到了明顯改善。該實驗現象與傳統的DLVO理論產生了明顯的矛盾,這是因為DLVO理論沒有考慮到短程排斥力的存在。水溶液中顆粒表面形成具有一定彈性的水化膜,當兩個顆粒靠近時,顆粒表面的水化膜在靠近重疊時產生一種短程的非DLVO作用力使兩個顆粒被彈開,該作用力稱為水化作用力。
圖3在不同pH值下納米SiO2/SDS體系的Zeta電位